Implementation of Low Power Test Pattern Generator Using LFSR

نویسندگان

  • K. Supriya
  • B. Rekha
  • Krishna Reddy
چکیده

In our project, we propose a novel architecture which generates the test patterns with reduced switching activities. LP-TPG (Test pattern Generator) structure consists of modified low power linear feedback shift register (LP-LFSR), m-bit counter; gray counter, NOR-gate structure and XOR-array. The m-bit counter is initialized with Zeros and which generates 2m test patterns in sequence. The m-bit counter and gray code generator are controlled by common clock signal [CLK]. The output of m-bit counter is applied as input to gray code generator and NOR-gate structure. When all the bits of counter output are Zero, the NOR-gate output is one. Only when the NOR-gate output is one, the clock signal is applied to activate the LP-LFSR which generates the next seed. The seed generated from LPLFSR is Exclusive–OR ed with the data generated from gray code generator. The patterns generated from the Exclusive–OR array are the final output patterns. The proposed architecture is simulated using Modelsim and synthesized using Xilinx ISE 13.2 and it will be implemented on XC3S500e Spartan 3E FPGA board for hardware implementation and testing. The Xilinx Chip scope tool will be used to test the FPGA inside results while the logic running on FPGA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modernistic Approach to Design Fault Tolerant Circuit Using LP-LFSR with Low Power Dissipation

The aim of testing of VLSI circuits is high-quality screening of the circuits by targeting performance related faults. A low hardware overhead test pattern generator (TPG) for scan based BIST that can detect the any faults in the circuit under test and analyze their response .It is a new fault coverage test pattern generator using a liner feedback shift register (LFSR) called FC-LFSR can perfor...

متن کامل

Design of Low Power TPG with LP-LFSR

-This paper presents a novel test pattern generator which is more suitable for built in self test (BIST) structures used for testing of VLSI circuits. The objective of the BIST is to reduce power dissipation without affecting the fault coverage. The proposed test pattern generator reduces the switching activity among the test patterns at the most. In this approach, the single input change patte...

متن کامل

A New Approach to Design TPG for Low Power Testing Applications

VLSI circuit’s encounters are rapidly many challenging tasks of semiconductor manufacturing along operating with gigahertz range of frequencies. These challenges are include keeping peak power dissipation and the application time within limits. In this Paper we are proposes a new approach of low power Test Pattern Generator (TPG) designed by modifying parallel Linear Feedback Shift Register (Pa...

متن کامل

FPGA Implementation of an LFSR based Pseudorandom Pattern Generator for MEMS Testing

Recent strides in programmable logic density, speed and hardware description language (HDL) have empowered the engineer with the ability to implement high-performance digital functionality within field programmable gate array (FPGA). Linear feedback shift resister (LFSR) has become one of the central elements used in testing and self testing of contemporary complex electronic systems like proce...

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013